Reverse Polish Notation (RPN) & Postfix Evaluation

Understanding Stacks and Queues

  • Stack (LIFO - Last In, First Out): Think of stacking cards. The last one placed is the first one removed.
  • Queue (FIFO - First In, First Out): Think of a line at a store. The first one in is the first one out.

What is Reverse Polish Notation (RPN)?

  • Infix Notation: Standard mathematical notation where operators are between operands. (e.g., 3 + 5 * 8)
  • Postfix Notation (RPN): Operators come after the operands. (e.g., 35+8* instead of (3+5)*8)

Example Conversions:

  1. 3 * 535*
  2. (3 + 5) * 835+8*

Postfix Expression Evaluation

Example: Solve 8 9 + 10 3 * 8 *

Step-by-Step Calculation:

  1. 8 9 +17
  2. 10 3 *30
  3. 30 8 *240
  4. Final result: 17 240 (Not combined yet, needs more context)

Try this: Solve 8 2 ^ 8 8 * +

Step-by-Step Calculation:

  1. 8 2 ^64 (Exponentiation: 8^2 = 64)
  2. 8 8 *64
  3. 64 64 +128 (Final result)

Why Use Postfix Notation?

  • Follows PEMDAS naturally (Parentheses, Exponents, Multiplication/Division, Addition/Subtraction).
  • Operators go into a stack, while numerals go into a queue.
  • Easier to evaluate expressions using stacks, reducing complexity in parsing.

Popcorn Hack - Convert to Infix!

Convert the following postfix expressions into infix notation:

  1. 6 3 * 4 + (6*3) + 4 18 + 4 22

  2. 10 2 8 * + 3 - 10+(2*8)-3 10+16-3 23

  3. 15 3 / 4 2 * + (15/3)+(4*2) 5+8 13

  4. 7 3 2 * + 5 - 7+(3*2)-5 7+6-5 8

  5. 9 3 + 2 ^ (9+3)^2 12^2 144

Answers Here for Popcorn Hack

  1. 6 3 * 4 + (6*3) + 4 18 + 4 22

  2. 10 2 8 * + 3 - 10+(2*8)-3 10+16-3 23

  3. 15 3 / 4 2 * + (15/3)+(4*2) 5+8 13

  4. 7 3 2 * + 5 - 7+(3*2)-5 7+6-5 8

  5. 9 3 + 2 ^ (9+3)^2 12^2 144

Infix to RPN

  • For every “token” in infix 824-E9-D4-F-D60-A-4941-B42-F-32-C730-BD9-DA5.png 85-DC050-E-F993-400-D-8608-179-A68144-DC4.png
    • If token is number: push into queue
    • Else if token is operator
      • While the stack isn’t empty, and the operator at the top of the stack has greater or equal “precedence” to the current token, pop values from stack into the queue.
      • Then push the “token” into the stack.
    • Else if token is “(“
      • Push token into stack
    • Else if token is “)”
      • Pop elements from stack to queue until you reach the “(“
      • Remove “(“ from the stack 99638-DD9-D95-C-48-B4-A8-E5-A406-EBA93-F44.png

Evaluate the RPN

  • Make new stack
  • For every token in queue
    • If token is number: push into stack
    • If token is operator:
      • Take 2 nums from top of the stack
      • Use the operator: [num1] (operator) [num2]
      • Put result into stack
  • When stack only has 1 element, you have your answer!

A117-BCA3-60-D8-41-F6-BFFD-FD10-C7453-D5-D.png

Homework:

  • Instead of making a calculator using postfix, make a calculator that uses prefix (the operation goes before the numerals)
  • Prefix: 35 becomes *35, (7-5)2 becomes *2-75

HW

import java.util.*;

public class PrefixCalculator {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter prefix expression: ");
        String expression = scanner.nextLine();
        System.out.println(expression);
        scanner.close();

        try {
            double result = evaluatePrefix(expression);
            System.out.println("Result: " + result);
        } catch (Exception e) {
            System.out.println("Invalid expression!");
        }
    }

    public static double evaluatePrefix(String expr) {
        Stack<Double> stack = new Stack<>();
        String[] tokens = expr.split("\\s+");
        List<String> operators = Arrays.asList("+", "-", "*", "/", "^");

        for (int i = tokens.length - 1; i >= 0; i--) {
            String token = tokens[i];

            if (!operators.contains(token)) {
                stack.push(Double.parseDouble(token));
            } else {
                double operand1 = stack.pop();
                double operand2 = stack.pop();

                switch (token) {
                    case "+": stack.push(operand1 + operand2); break;
                    case "-": stack.push(operand1 - operand2); break;
                    case "*": stack.push(operand1 * operand2); break;
                    case "/": stack.push(operand1 / operand2); break;
                    case "^": stack.push(Math.pow(operand1, operand2)); break;
                    default: throw new IllegalArgumentException("Invalid operator: " + token);
                }
            }
        }

        return stack.pop();
    }
}

PrefixCalculator calc = new PrefixCalculator();
calc.main(null);
Enter prefix expression: + 3 * 5 2
Result: 13.0